There has been a significant shift in the public cloud infrastructure offerings landscape in the last 3-5 years. With that shift we as Information Security practitioners must also fundamentally shift our tactics and view of how these new services can be leveraged as a whole new landscape of possible vectors to be exploited into today’s public cloud infrastructure.

As a Pre-Sales Security Engineer, I talk to many customers on a daily basis that have gone all-in with their public cloud strategy and many that are hybrid with what they view as legacy on-premise workloads and those that are still relatively new to public cloud, and as such, only have lab and test workloads that they are looking to protect.

Regardless of whether an organization is cloud native from the ground up or somewhere along the path to transitioning to the public cloud, they must all recognize that the infrastructure landscape has changed drastically from what an on-premise datacenter traditionally looked like. That change includes security. Even public cloud capabilities themselves have changed drastically from server to serverless and containerized microservices from just a few short years ago.

In today’s public cloud landscape across all major providers, InfoSec teams must realize that their cloud assets that require protection stretch far beyond those of traditional virtual machines being hosted by their respective cloud provider. The introduction of point-in-time on-demand compute, serverless databases, machine learning services, public-facing storage buckets, and elastic containerized environments like Kubernetes has introduced a plethora of new attack surfaces that, if not secured properly, could potentially all be leveraged as a vector into a customer’s cloud environment.

Combine the sprawl of serverless capabilities that are being offered by public cloud providers with the development culture shift to DevOps and the rise in Shadow IT, and the risk to an organization is very apparent. Their concern should not only be the cloud workloads they know about, but also the ones they are completely blind to.

The traditional mindset of attackers gaining entry into a network via a public-facing application vulnerability or perimeter firewall gap must shift knowing the many services and entry points into an organization’s public cloud network. Now InfoSec teams must focus their attention on non-traditional attack vectors like compromised API access keys, weakly-permissioned file storage buckets, an expanding credentialed access surface area, or one of dozens of public cloud unique services that can easily be exposed to the Internet with no firewall or ACL to protect them from adversaries. A Kubernetes cluster in the public cloud can easily grow from a possibly vulnerable surface area of a few nodes with a few pods each to a massive cluster with hundreds or thousands of internet-facing pods in a matter of minutes.

Organizations must have visibility into the underlying infrastructure if they want to have a chance at trying to protect this rapidly-expanding public cloud landscape. You can’t rely on agents or manual human oversight to ensure workloads and assets are accounted for and secured. The surface area of virtual machine sprawl, serverless compute applications, and DevOps/Shadow IT dictates that organizations have no choice but to leverage the public cloud’s underlying network infrastructure as a catch-all security sensor grid. If an organization can ensure that they can see everything and eliminate all possible blind spots despite the stated landscape, then they can see, secure and monitor everything that’s in their cloud environment.

But how? This is where Cisco Stealthwatch Cloud plays an integral and necessary role in providing an organization this essential catch-all visibility layer. The solution leverages agentless API integrations and cloud-native network flow log ingestion to provide a complete record of every transaction that occurs within any public cloud environment or service, be-it server, serverless, or containerized. Stealthwatch Cloud generates a deep forensic history of every cloud entity known or unknown, learns known good behavior on each and then alerts on hundreds of indicators of compromise or policy violation that can put an organization at risk of breach.

Interested? Sign up for a free, 60-day trial of Stealthwatch Cloud today.


Jeff Moncrief

Consulting Systems Engineer

Global Security Sales