Historical data is now an essential tool for businesses as they struggle to meet increasingly stringent regulatory requirements, manage risk and perform predictive analytics that help improve business outcomes. While recent data is readily accessible in operational systems and some summarized historical data available in the data warehouse, the traditional practice of archiving older, detail-level data on tape makes analysis of that data challenging, if not impossible.
Active Archiving Uses Hadoop Instead of Tape
What if the historical data on tape was loaded into a similar low cost, yet accessible, storage option, such as Hadoop? And then data virtualization applied to access and combine this data along with the operational and data warehouse data, in essence intelligently partitioning data access across hot, warm and cold storage options. Would it work?
Yes it would! And in fact does every day at one of our largest global banking customers. Here’s how:
Adding Historical Data Reduces Risk
The bank uses complex analytics to measure risk exposure in their fixed income trading business by industry, region, credit rating and other parameters. To reduce risk, while making more profitable credit and bond derivative trading decisions, the bank wanted to identify risk trends using five years of fixed income market data rather than the one month (400 million records) they currently stored on line. This longer time frame would allow them to better evaluate trends, and use that information to build a solid foundation for smarter, lower-risk trading decisions.
As a first step, the bank installed Hadoop and loaded five years of historical data that had previously been archived using tape. Next they installed Cisco Data Virtualization to integrate the data sets, providing a common SQL access approach that made it easy for the analysts to integrate the data. Third the analysts extended their risk management analytics to cover five years. Up and running in just a few months, the bank was able to use this long term data to better manage fixed income trading risk.
CONNECT WITH US