Cisco Blogs


Cisco Blog > SP360: Service Provider

Make Room in the Family Car for the Family Mobile Data Plan

In another twist on monetizing the “Connected Car”, AT&T recently announced that its “Mobile Share Value” data plan – which lets customers purchase a monthly allotment of 4G/LTE mobile data that can be shared among smartphones and tablets used by family members – now allows cars to be added to the list of “devices” that can tap into the same data quota. So far, AT&T has announced 2 auto manufacturers, GM and Audi, will support the Mobile Share Value plan in this way.

AM79084

From a consumer standpoint, this makes a lot of sense. Auto manufacturers have sought to bring the consumer app and content experience into the car in some way or another – e.g., by trying to seamlessly connect a user’s smartphone to the car’s entertainment and telematics systems, and/or by creating user-friendly, non-distracting Head-Up Display (HUD) interfaces to these systems. Furthermore, Read More »

Tags: , , , , ,

VoLTE Policy Management to Improve Subscriber Experience and Lower Cost of Growth

Written By Alfonso San Jose, Sales Consulting Systems Engineer

Alfonsov2

We have been hearing from our Service Provider customers like you about their interest in Voice over Long Term Evolution (VoLTE), and for good reason.  Offering VoLTE affects profitability in two ways. One is by creating a great voice experience that helps to attract and retain subscribers. VoLTE provides guaranteed quality of service and fast call-setup time. At the same time, VoLTE can lower network costs. However, VoLTE creates new demands on the network that requires a policy management solution to address. VoLTE changes the game for policy management because it imposes much heavier demands than 4G data services. The policy management solution needs to meet the following four requirements: Read More »

Tags: , , , , ,

Mobile Technology Spotlight: Mobile Phone Microscopes for the Developing World

Aydogan Ozcan_IMAGEThis is a guest blog contributed by Dr. Aydogan Ozcan, Chancellor’s Professor at UCLA. **

In many developing regions today, cellphones and other mobile devices have begun to play a significant role in healthcare distribution. Local networks operated by service providers allow medical staff to utilize mobile technology to treat, educate, and set follow-up appointment dates with patients. Not only can patients access information about their health, but they can meet with physicians via video over the mobile network. For regions where people may be hundreds or even thousands of miles from a local doctor or hospital, these mobile devices can become lifesaving tools.

While cell phones and other mobile devices such as PCs and tablets can serve as a source of medical information or as a virtual meeting place between a doctor and patient, the technology itself can play a more important role of improving health care in developing regions as an actual medical device. Take for example, the work of University of California, Los Angeles (UCLA), Chancellor’s Professor, Dr. Aydogan Ozcan. Ozcan is creating portable and lightweight microscopes that affix to the mobile phones, thus transforming them into a platform for conducting microanalysis of blood, bodily fluids and water samples. With Dr. Ozcan’s vision and technology research, cellphones can become a mobile medical lab that can diagnose life-threatening diseases.

Mobile Technology Saves Lives

According to Cisco’s Visual Networking Index, by the end of 2014, the number of mobile-connected devices will exceed the number of people on earth, and by 2018 there will be nearly 1.4 mobile devices per capita. The massive volume of mobile phone users drives the rapid improvements of the hardware, software and high-end imaging and sensing technologies embedded in our phones, transforming the mobile phone into a cost-effective and yet extremely powerful platform to run biomedical tests and perform scientific measurements that would normally require advanced laboratory instruments. In addition to their massive volume, cost-effectiveness, coverage and data connectivity, rapid improvements in cellphone related technologies and components over the last decade provide important insights into some of the unique capabilities that our cellphones currently have. One of the most interesting components rapidly advancing on cell phones is the optoelectronic image sensor.

The mega-pixel count of cellphone cameras has been doubling almost every two years over the last decade. These advanced optical imagers on our cellphones provide various opportunities to utilize the cellphone as a general purpose microscope that can even detect single viruses on a chip. Microscopy is one of the most widely used tools in sciences, engineering and medicine, and the creation of high-end optical microscopy and imaging platforms that are integrated into cellphones is rather important for not only telemedicine (e.g., telepathology, remote diagnostics), mobile health, and environmental monitoring applications, but also for the democratization of measurement science and higher education.

Besides microscopy, these advanced imaging and optoelectronic or electronic sensing/sampling technologies embedded in cellphones can also be utilized for various telemedicine, and mobile health-related applications including, blood analysis and cytometry, detection of bacteria or viruses and diagnosis of infectious diseases.

Big Data for Service Providers

Mobile phone based field-portable measurement tools are also digitally connected to each other, forming a rapidly expanding network. Based on the advances in the broad use of cellphones for micro-analysis, imaging, and sensing, within the next decades, we can expect several orders of magnitude increase in the number of personal microscope and diagnostic tool users globally. All of these cost-effective and ubiquitous cellphone enabled devices designed for field portable imaging, sensing and testing would generate high quality, sensitive and specific data from wherever they are being used, forming a global network. In addition to mobile phones, other emerging consumer electronics devices – especially wearable computers such as Google Glass, Samsung Smartwatch and others – might also play important roles in the future practices and designs of next-generation mobile health, telemedicine and POC tools.

Cisco_DrOzcan_final

Mobile phones will change the way that imaging, sensing and diagnostic measurements/tests are conducted, fundamentally impacting the existing practices in medicine, engineering and sciences, while also creating new ones. This transformation will also democratize high-end measurement and testing tools worldwide, which might significantly improve research and education institutions, especially in developing regions.

As the world becomes increasingly mobile, service providers have a unique opportunity to use their core technology and business assets to create new solutions and services to enhance their users’ experience and utility, reshape businesses and business models, and create new sources of value beyond their core access business.

 ——--

**Dr. Aydogan Ozcan is the Chancellor’s Professor at UCLA leading the Bio- and Nano-Photonics Laboratory at the Electrical Engineering and Bioengineering Departments.

Dr. Ozcan holds 22 issued patents (all of which are licensed) and >15 pending patent applications and is also the author of one book and the co-author of more than 350 peer reviewed research articles in major scientific journals and conferences. Dr. Ozcan is a Fellow of SPIE and OSA, and has received major awards including the Presidential Early Career Award for Scientists and Engineers (PECASE), SPIE Biophotonics Technology Innovator Award, SPIE Early Career Achievement Award, ARO Young Investigator Award, NSF CAREER Award, NIH Director’s New Innovator Award, ONR Young Investigator Award, IEEE Photonics Society Young Investigator Award and MIT’s TR35 Award for his seminal contributions to near-field and on-chip imaging, and telemedicine based diagnostics.

Tags: , , , , , ,

Where Virtualization Does and Doesn’t Make Sense – An Optimization Primer

bioShot-sWritten By Wayne Cullen, Senior Manager, Service Provider Architectures

Along with cloud computing, M2M, collaboration, and hoodie sweatshirts, virtualization is a trend du jour. Like all trends, it’s based on an old idea (dating back to the mainframe era) that has now been reimagined for new purposes. One of the newest roles for virtualization is network functions such as those in switches, routers, and network appliances, including firewalls and load balancers—thanks to Network Functions Virtualization (NFV). And this is just the beginning of what is going to be virtualized in your network.

Being a Selective Virtualizer

Virtualization can provide some big cost savings and reduce network complexity. But virtualization is like chocolate. You eat too much and some bad things can happen. The early days of virtualization (when servers were virtualized) provide a cautionary tale. Server virtualization lowered CapEx but led to skyrocketing operational costs because much more complex processes—hence highly-skilled staff—were required.

The lesson: Be selective in virtualizing your resources and functions. And focus your time optimizing your network to lower TCO with a flexible, adaptable infrastructure as part of your virtualization efforts.

How and Where to Optimize Your Network for Virtualization

Tags: , , ,

Get Your WLAN Ready for Google Android L and Apple iOS 8

July 24, 2014 at 5:00 am PST

This fall your wireless networks will experience many devices upgrading to the new Android 5.0(L-release) and Apple iOS 8 releases (cue: IT managers groan). There have now been many blogs attempting to capture the enhancements expected with these releases. Today I am going to focus on describing how Android L and iOS 8 may affect customers deploying Cisco enterprise grade Wi-Fi networks based upon our research and testing of the Apple seed. Our verdict: Carry on with business as usual.

Here are four features we predict will have the most impact your networks:

1. Chromecast and Google Cast Enhancements (Android L)

Rishi Chandra, the Director of Chromecast Product Management announced that, starting with the Android L release, users have the ability to cast to your neighboring devices such as a TV without having to connect to your Wi-Fi network. In the demo, a phone used the cellular connection to connect to chromecast through the cloud. A variety of techniques are used to authenticate the users in the same room OR use a pin-code as an alternative. Users can Google Cast an ecosystem of applications or even their own applications over any Android or iOS device as well as Cloud based apps on Chrome.

Predicted Impact: Given that this feature works transparently to the Wi-Fi, it is expected that there is no impact on the WLAN in your classrooms or dorm rooms or auditoriums where this will most likely be used.

2. Peer-to-peer AirPlay discovery and playback (iOS 8)

Starting with the iOS 7.1 release, AirPlay devices will discover an AppleTV via the bluetooth network. Users could also secure their AppleTV via a 4 digit pin-code. With the iOS 8 release, Airplay devices can also mirror their content via Airdrop. This feature offers an alternative method for customers to discover and mirroring of Bonjour traffic without accessing the corporate Wi-Fi network.

Predicted Impact: Again this feature operates transparent to the Wi-Fi and therefore customers using this feature should not see any impact on the WLAN. Cisco wireless customers also have the ability to use the Service Discovery Gateway on Cisco IOS based switches, routers or wireless LAN controllers or the Bonjour Services Directory on AireOS controllers. Read More »

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,