Cisco Blogs


Cisco Blog > Collaboration

Cisco’s OpenH264 Now Part of Firefox

Voice and video communications over IP have become ubiquitous over the last decade, pervasive across desktop apps, mobile apps, IP phones, video conferencing endpoints, and more.  One big barrier remains: users can’t collaborate directly from their web browser without downloading cumbersome plugins for different applications.  WebRTC – a set of extensions to HTML5 – can change that and enable collaboration from any browser. However, one of the major stumbling blocks in adoption of this technology is a common codec for real-time video.

The Internet Engineering Task Force (IETF) and World Wide Web Consortium (W3C) have been working jointly to standardize on the right video codec for WebRTC. Cisco and many others have been strong proponents of the H.264 industry standard codec. In support of this, almost a year ago Cisco announced that we would be open sourcing our H.264 codec and providing the source code, as well as a binary module that can be downloaded for free from the Internet. Perhaps most importantly, we announced that we would not pass on our MPEG-LA licensing costs for this binary module, making it effectively free for applications to download the module and communicate with the millions of other H.264 devices. At that time, Mozilla announced its plans to add H.264 support to Firefox using OpenH264.

Since then, we’ve made enormous progress in delivering on that promise. We open sourced the code, set up a community and website to maintain it, delivered improvements and fixes, published the binary module, and have made it available to all. This code has attracted a community of developers that helped improve Read More »

Tags: , , , , , , , , , ,

Operators Accelerating Pace with NFV and SDN

Save Money Here and Now

When was the last time you won the lottery?  If you are like me, it’s a pretty rare occasion indeed.  The same probability can be applied to increasing the budget allocation for any business and especially for service providers.  What can service providers do to save money now, enabling them to invest in new services and boost revenues?   Network functions virtualization (NFV) comes to the rescue, with help of course, from software defined networking (SDN), and open source innovations.

SDN and NFV represent a significant change in networking as we currently know it. Together and separately, both target cost savings, operational complexity, and network optimization – and both hold much promise for the operator. As with all things offering great potential rewards, one must balance these benefits and address the associated risks accordingly when deploying them.

For service providers, the data center is leading target for SDN and NFV deployments. Given all the activity focused on cloud computing, content delivery, and anything-as-a-service (XaaS) offerings, the service provider data centers must advance across many fronts (security, automation, mobility, reliability analytics, and provisioning) to be successful.

Interestingly, all operators Read More »

Tags: , , , , , , , , , , , ,

Enabling Open, Agile, Application Centric Networks With Cisco Evolved Services Platform

Service provider customers expect more.   The pace of change around us is not just constant but continuing to accelerate.   To stay competitive with the nimble new players in the market, service providers need to change how they engage all of their end customers.   Not exactly an easy challenge to overcome, but rapid and successful business transformation will put operators right in the middle of a world of new opportunities to capture customer mindshare.  Exciting times are ahead!

So, what will it take for service providers to save money on their current service offerings, enabling them to invest and expand their businesses?   Positive outcomes are made possible by an open, agile, and application centric approach, combining emerging Software-Defined Network (SDN), Network Functions Virtualization (NFV), and Open API technologies …  not just to the network… but to all of their business processes.

Faster creation of personalized services that are easy to consume is enabled by the Cisco Evolved Services Platform (ESP), automating and provisioning new services in real-time at web speed.   End customers can Read More »

Tags: , , , , , , , , , , , , ,

Paradigm Shift with Edge Intelligence

In my Internet of Things keynote at LinuxCon 2014 in Chicago last week, I touched upon a new trend: the rise of a new kind of utility or service model, the so-called IoT specific service provider model, or IoT SP for short.

I had a recent conversation with a team of physicists at the Large Hadron Collider at CERN. I told them they would be surprised to hear the new computer scientist’s talk these days, about Data Gravity.  Programmers are notorious for overloading common words, adding connotations galore, messing with meanings entrenched in our natural language.

We all laughed and then the conversation grew deeper:

  • Big data is very difficult to move around, it takes energy and time and bandwidth hence expensive. And it is growing exponentially larger at the outer edge, with tens of billions of devices producing it at an ever faster rate, from an ever increasing set of places on our planet and beyond.
  • As a consequence of the laws of physics, we know we have an impedance mismatch between the core and the edge, I coined this as the Moore-Nielsen paradigm (described in my talk as well): data gets accumulated at the edges faster than the network can push into the core.
  • Therefore big data accumulated at the edge will attract applications (little data or procedural code), so apps will move to data, not the other way around, behaving as if data has “gravity”

Therefore, the notion of a very large centralized cloud that would control the massive rise of data spewing from tens of billions of connected devices is pitched both against the laws of physics and Open Source not to mention the thirst for freedom (no vendor lock-in) and privacy (no data lock-in). The paradigm shifted, we entered the 3rd big wave (after the mainframe decentralization to client-server, which in turn centralized to cloud): the move to a highly decentralized compute model, where the intelligence is shifting to the edge, as apps come to the data, at much larger scale, machine to machine, with little or no human interface or intervention.

The age-old dilemma, do we go vertical (domain specific) or horizontal (application development or management platform) pops up again. The answer has to be based on necessity not fashion, we have to do this well; hence vertical domain knowledge is overriding. With the declining cost of computing, we finally have the technology to move to a much more scalable and empowering model, the new opportunity in our industry, the mega trend.

Very reminiscent of the early 90′s and the beginning of the ISPs era, isn’t it? This time much more vertical with deep domain knowledge: connected energy, connected manufacturing, connected cities, connected cars, connected home, safety and security.  These innovation hubs all share something in common: an Open and Interconnected model, made easy by the dramatically lower compute cost and ubiquity in open source, to overcome all barriers of adoption, including the previously weak security or privacy models predicated on a central core. We can divide and conquer, deal with data in motion, differently than we deal with data at rest.

The so-called “wheel of computer science” has completed one revolution, just as its socio-economic observation predicted, the next generation has arrived, ready to help evolve or replace its aging predecessor. Which one, or which vertical will it be first…?

Tags: , , , , , , , , , , , , , , , , , ,

Power of Open Choice in Hypervisor Virtual Switching

July 28, 2014 at 5:00 am PST

Customers gain great value from server virtualization in the form of virtual machines (VM) and more recently Linux Containers /Dockers in data centers, clouds and branches.  By some estimates, more than 60 % of the workloads are virtualized although less than 16% of the physical servers (IDC) are virtualized (running a hypervisor).  From a networking perspective, the hypervisor virtual switch on these virtualized servers plays a critical component in all current and future data center, cloud, and branch designs and solutions

As we count down to the annual VMworld conference and reflect on the introduction of the Cisco Nexus 1000V in vSphere 4.0 six years ago, we can feel proud of what we have achieved. We have to congratulate VMware for their partnership and success in opening vSphere networking to third party vendors. It was beneficial for our joint customers, and for both companies. VMware and Cisco could be considered visionaries in this sense. Recognizing this success, the industry has followed.

Similarly we praise Microsoft as well, for having also provided an open environment for third-party virtual switches within Hyper-V, which has continued gaining market share recently.  Cisco and Microsoft (along with other industry players) are leading the industry with the latest collaboration on submitting the OpFlex control protocol to the IETF. Microsoft’s intention to enable OpFlex support in their native Hyper-V virtual switch enables standards-based interaction with the virtual switches.  Another win for customers and the industry.

In KVM and Xen environments, many organizations have looked at Open vSwitch (OVS) as an open source alternative. There is an interest in having richer networking than the standard Linux Bridge provides, or using OVS as a component for implementing SDN-based solutions like network virtualization. We think that there is an appetite for OVS on other hypervisors as well.  Cisco is also committed to contributing and improving these open source efforts.  We are active contributors in the Open Virtual Switch project and diligently working to open source our OpFlex control protocol implementation for OVS in the OpenDaylight consortium.

To recap on the thoughts from above, Table 1 provides a quick glance at the options for virtual networking from multiple vendors as of today:

Table 1:  Hypervisors and Choices in Virtual Switches

Hypervisor

Native vSwitch

3-party or OpenSource  vSwitch

vSphere

•Standard vSwitch
•Distributed Virtual Switch
•Cisco Application Virtual Switch
•IBM DVS 5000V
•HP Virtual Switch 5900V

Hyper-V

Native Hyper-v Switching
•NEC
•Broadcom

KVM

Linux Bridge(some distributions include OVS natively)
•OVS

XEN

OVS -- open source project with multiple contributions from different vendors and individuals
•OVS

 

As an IT Professional, whether you are running workloads on Red Hat KVM, Microsoft Hyper-V or VMware vSphere, it is difficult to imagine not having a choice of virtual networking. For many customers, this choice still means using the hypervisor’s native vSwitch.  For others, it is about having an open source alternative, like OVS. And in many other cases, having the option of selecting an Enterprise-grade virtual switch has been key to increasing deployments of virtualization, since it enables consistent policies and network operations between virtual machines and bare metal workloads.

As can be seen in the table above, Cisco Nexus 1000V continues to be the industry’s only multi-hypervisor virtual switching solution that delivers enterprise class functionality and features across vSphere, Hyper-V and KVM. Currently, over 10,000 customers have selected this option with Cisco Nexus 1000V in either vSphere, Hyper-V, or KVM (or a combination of them).

Cisco is fully committed to the Nexus 1000V for vSphere, Hyper-V and KVM and also the Application Virtual Switch (AVS) for Application Centric Infrastructure (ACI), in addition to our open source contributions to OVS.  Cisco has a large R&D investment in virtual switching, with a lot of talented engineers dedicated to this area, inclusive of those working on open-source contributions.

Nexus 1000V 3.0 release for vSphere is slated for August 2014 (general availability). This release addresses scale requirements of our increasing customer base, as well as an easy installation tool in the form of Cisco Virtual Switch Update Manager.   The Cisco AVS for vSphere will bring the ACI policy framework to virtual servers.  With ACI, customers will for the first time benefit from a true end-to-end virtual + physical infrastructure being managed holistically to provide visibility and optimal performance for heterogeneous hypervisors and workloads (virtual or physical).  These innovations and choices are enabled by the availability of open choices in virtual switching within hypervisors.

As we look forward to VMworld next month, we are excited to continue the collaborative work with platform vendors VMware, Microsoft, Red Hat, Canonical, and the open source community to maintain and continue development of openness and choice for our customers.  We are fully committed to this vision at Cisco.

Acknowledgement:  Juan Lage (@juanlage) contributed to this blog.

Tags: , , , , , , , , , , , , , , ,