Cisco Blogs

Cisco Blog > Security

Attack Analysis with a Fast Graph

TRAC-tank-vertical_logo-300x243This post is co-authored by Martin Lee, Armin Pelkmann, and Preetham Raghunanda.

Cyber security analysts tend to redundantly perform the same attack queries with different input data. Unfortunately, the search for useful meta-data correlation across proprietary and open source data sets may be laborious and time consuming with relational databases as multiple tables are joined, queried, and the results inevitably take too long to return. Enter the graph database, a fundamentally improved database technology for specific threat analysis functions. Representing information as a graph allows the discovery of associations and connection that are otherwise not immediately apparent.

Within basic security analysis, we represent domains, IP addresses, and DNS information as nodes, and represent the relationships between them as edges connecting the nodes. In the following example, domains A and B are connected through a shared name server and MX record despite being hosted on different servers. Domain C is linked to domain B through a shared host, but has no direct association with domain A.

graph_image_1 This ability to quickly identify domain-host associations brings attention to further network assets that may have been compromised, or assets that will be used in future attacks.

Read More »

Tags: , , , , , , , , , , , , , , , , , , , , , ,

Big Data in Security – Part III: Graph Analytics

TRACFollowing part two of our Big Data in Security series on University of California, Berkeley’s AMPLab stack, I caught up with talented data scientists Michael Howe and Preetham Raghunanda to discuss their exciting graph analytics work.

Where did graph databases originate and what problems are they trying to solve?

Michael: Disparate data types have a lot of connections between them and not just the types of connections that have been well represented in relational databases. The actual graph database technology is fairly nascent, really becoming prominent in the last decade. It’s been driven by the cheaper costs of storage and computational capacity and especially the rise of Big Data.

There have been a number of players driving development in this market, specifically research communities and businesses like Google, Facebook, and Twitter. These organizations are looking at large volumes of data with lots of inter-related attributes from multiple sources. They need to be able to view their data in a much cleaner fashion so that the people analyzing it don’t need to have in-depth knowledge of the storage technology or every particular aspect of the data. There are a number of open source and proprietary graph database solutions to address these growing needs and the field continues to grow.

Graph Read More »

Tags: , , , , , , , , , , , , ,