Cisco Blogs


Cisco Blog > Digital and Social

Our spiffy new tablet app

In case you missed it, Cisco now has a tablet version of our flagship app.  And it’s great. Some new features include:

  • Products use a ‘touch’ visual navigation structure
  • Quicker navigation through ‘bookmarking’  without the need to login
  • Video Datasheets delivered via the tablet app
  • Comprehensive Internet of Everything and social media coverage
  • Partner content, such as incentives, promotions, and support
  • Push notification services
  • Faster updates to navigation and content from Cisco in real time

Get it at:

Some pictures:

2_products 4_video 1_homepage

Enjoy!

 

Tags: , , ,

Why Upgrade to MDS 9700

MDS 9500 family has supported customers for more than a decade helping them  through FC speed transitions from 1G, 2G, 4G, 8G and 8G advanced without forklift upgrades. But as we look in the future the MDS 9700 makes more sense for a lot of data center designs.  Top four reasons for customers to upgrade are

  1. End of Support Milestones
  2. Storage Consolidation
  3. Improved Capabilities
  4. Foundation for Future Growth

So lets look at each in some detail.

  1. End of Support Milestones

MDS 4G parts are going End of Support on Feb 28th 2015. Impacted part numbers are DS-X9112, DS-X9124, DS-X9148. You can use the MDS 9500 Advance 8G Cards or MDS 9700 based design. Few advantages MDS 9700 offers over any other existing options are

a. Investment Protection – For any new Data Center design based on MDS 9700 will have much longer life than MDS 9500 product family. This will avoid EOL concerns or upgrades in near future. Thus any MDS 9700 based design will provide strong investment protection and will also ensure that the architecture is relevant for evolving data center needs for more than a decade.

b. EOL Planning – With MDS 9700 based design you control when you need to add any additional blades but with MDS 9500, you will have to either fill up the chassis within 6 months (End of life announcement to End of Sales) or leave the slots empty forever after End of Sale date.

c. Simplify Design - MDS 9700 will allow single skew, S/W version, consistent design across the whole fabric which will simplify the management. MDS 9700 massive performance allows for consolidation and thus reducing footprint and management burden.

d. Rich Feature Set - Finally as we will see later MDS provides host of features and capabilities above and beyond MDS 9500 and that enhancement list will continue to grow.

 Tech Refresh Example v1

  1. Storage Consolidation

MDS 9700 provides unprecedented consolidation compared to the existing solutions in the industry. As an example with MDS 9710 customers can use the 16G Line Rate ports to support massively virtualized workload and consolidate the server install base. Secondly with 9148S as Top of Rack switch and MDS 9700 at Core, you can design massively scalable networks supporting consistent latency and 16G throughput independent of the number of links and traffic profile and will allow customers to Scale Up or Scale Out much more easily than legacy based designs or any other architecture in the industry.

Moreover as shown in figure above for customers with MDS 9500 based designs MDS 9710 offers higher number of line rate ports in smaller footprint and much more economical way to design SANs. It also enables consolidation with higher performance as well as much higher availability.

Small SANs to Large SAN Design v1

 

  1. Improved Capabilities

MDS 9700 design provides more enhanced capabilities above and beyond MDS 9500 and many more capabilities will be added in future. Some examples that are top of mind are detailed below

Availability: MDS 9700 based design improves the reliability due to enhancements on many fronts as well as simplifying the overall architecture and management.

    • MDS 9710 introduced host of features to improve reliability like industry’s first N+1 Fabric redundancy, smaller failure domains and hardware based slow drain detection and recovery.
    • Its well understood that reliability of any network comes from proper design, regular maintenance and support. It is imperative that Data Center is on the recommended releases and supported hardware. As an example data center outage where there are unsupported hardware or software version failure are exponentially more catastrophic as the time to fix those issues means new procurement and live insertion with no change management window. Cost of an outage in an Data Center is extremely high so it is important to keep the fabric upgraded and on the latest release with all supported components. Thus for new designs it makes sense that it is based on the latest MDS 9700 directors, as an example, rather than MDS 9513 Gen-2 line cards because they will fall of the support on Feb 28, 2015. Also a lot of times having different versions of the hardware and different software versions add complexity to the maintenance and upkeep and thus has a direct impact on the availability of the network as well as operational complexity.

Throughput:

With massive amounts of virtualization the user impact is much higher for any downtime or even performance degradation. Similarly with the data center consolidation and higher speeds available in the edge to core connectivity more and more host edge ports are connected through the same core switches and thus higher number of apps are dependent on consistent end to end performance to provide reliable user experience. MDS 9700 provides industries highest performance with 24Tbps switching capability. The Director class switch is based on Crossbar architecture with Central Arbitration and Virtual Output Queuing which ensures consistent line rate 16G throughput independent of the traffic profile with all 384 ports operating at 16G speeds and without using crutches like local switching (muck akin to emulating independent fixed fabric switches within a director), oversubscription (can cause intermittent performance issues) or bandwidth allocation.

Latency:

MDS Directors are store and forward switches this is needed as it makes sure that corrupted frames are not traversing everywhere in the network and end devices don’t waste precious CPU cycles dealing with corrupted traffic. This additional latency hit is OK as it protects end devices and preserves integrity of the whole fabric. Since all the ports are line rate and customers don’t have to use local switching. This again adds a small latency but results in flexible scalable design which is resilient and doesn’t breakdown in future. These 2 basic design requirements result in a latency number that is slightly higher but results in scalable design and guarantees predictable performance in any traffic profile and provides much higher fabric resiliency .

Consistent Latency: For MDS directors latency is same for the 16G flow to when there are 384 16G flows going through the system. Crossbar based switch design, Central arbitration and Virtual Output Queuing guarantees that. Having a variable latency which goes from few us to a high number is extremely dangerous. So first thing you need to make sure is that director could provide consistent and predictable latency.

End to End latency: Performance of any application or solution is dependent on end to end latency. Just focusing on SAN fabric alone is myopic as major portion of the latency is contributed by end devices. As an example spinning targets latency is of the order of ms. In this design few us is orders of magnitude less and hence not even observable. With SSD the latency is of the order of 100 to 200 us. Assuming 150 us the contribution of SAN fabric for edge core is still less than 10%. Majority (90%) of the latency is end devices and saving couple of us in SAN Fabric will hardly impact the overall application performance but the architectural advantage of CRC based error drops and scalable fabric design will make provided reliable operations and scalable design.

Scalability:

For larger Enterprises scalability has been a challenge due to massive amount of host virtualization. As more and more VMs are logging into the fabric the requirement from the fabric to support higher flogins, Zones. Domains is increasing. MDS 9700 has industries highest scalability numbers as its powered by supervisor that has 4 times the memory and compute capability of the predecessor. This translates to support for higher scalability and at the same time provides room for future growth.

MDS 9700 Capabilities v2

Foundation for Future Growth:

MDS 9700 provides a strong foundation to meet the performance and scalability needs for the Data Center requirements but the massive switching capability and compute and memory will cover your needs for more than a decade.

    • It will allow you to go to 32G FC speeds without forklift upgrade or changing Fabric Cards (rather you will need 3 more of the same Fabric card to get line rate throughput through all the 384 ports on MDS 9710 (and 192 on MDS 9706).
    • MDS 9700 allow customers to deploy 10G FCoE solution today and upgrade without forklift upgrade again to 40G FCoE.
    • MDS 9700 is again unique such that customers can mix and match FC and FCoE line cards any way they want without any limitations or constraints.

Most importantly customers don’t have to make FC vs FCoE decision. Whether you want to continue with FC and have plans for 32G FC or beyond or if you are looking to converge two networks into single network tomorrow or few years down the road MDS 9700 will provide consistent capabilities in both architectures.

Foundation for Future Growth v1

In summary SAN Directors are critical element of any Data Center. Going back in time the basic reason for having a separate SAN was to provide unprecedented performance, reliability and high availability. Data Center design architecture has to keep up with the requirements of new generation of application, virtualization of even the highest performance apps like databases, new design requirements introduced by solutions like VDI, ever increasing Solid State drive usage, and device proliferation. At the same time when networks are getting increasingly complex the basic necessity is to simplify the configuration, provisioning, resource management and upkeep. These are exact design paradigms that MDS 9700 is designed to solve more elegantly than any existing solution.

Although I am biased in saying that but it seems that you have voted us with your acceptance. Please see some more details here.

 

 

Live as if you were to die tomorrow. Learn as if you were to live forever.
Mahatma Gandhi

 

 

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

A Circular Problem in Current Information Security Principles

Editor’s Note: In this second installment of the blog series on more responsive security, we take a closer look at the circular problems associated with four common security principles in managing “weak link” risks in Information Technology organizations.

Before discussing what constitutes this responsive approach to security, let us first look at a few of the fundamental principles of information security to understand the unique challenges organizations face today in managing security risks.

Read More »

Tags: , , , ,

MDS 9700 Scale Out and Scale Up

This is the final part on the High Performance Data Center Design. We will look at how high performance, high availability and flexibility allows customers to scale up or scale out over time without any disruption to the existing infrastructure.  MDS 9710 capabilities are field proved with the wide adoption and steep ramp within first year of the introduction. Some of the customer use cases regarding MDS 9710 are detailed here. Furthermore Cisco has not only established itself as a strong player in the SAN space with so many industry’s first innovations like VSAN, IVR, FCoE, Unified Ports that we introduced in last 12 years, but also has the leading market share in SAN.

Before we look at some architecture examples lets start with basic tenants any director class switch should support when it coms to scalability and supporting future customer needs

  • Design should be flexible to Scale Up (increase performance) or Scale Out (add more port)
  • The process should not be disruptive to the current installation for cabling, performance impact or downtime
  • The design principals like oversubscription ratio, latency, throughput predictability (as an example from host edge to core) shouldn’t be compromised at port level and fabric level

Lets take a scale out example, where customer wants to increase 16G ports down the road. For this example I have used a core edge design with 4 Edge MDS 9710 and 2 Core MDS 9710. There are 768 hosts at 8Gbps and 640 hosts running at 16Gbps connected to 4 edge MDS 9710 with total of 16 Tbps connectivity. With 8:1 oversubscription ratio from edge to core design requires 2 Tbps edge to core connectivity. The 2 core systems are connected to edge and targets using 128 target ports running at 16Gbps in each direction. The picture below shows the connectivity.

Edge Core Design Day 1

Down the road data center requires 188 more ports running at 16G. These 188 ports are added to the new edge director (or open slots in the existing directors) which is then connected to the core switches with 24 additional edge to core connections. This is repeated with 24 additional 16G targets ports. The fact that this scale up is not disruptive to existing infrastructure is extremely important. In any of the scale out or scale up cases there is minimal impact, if any, on existing chassis layout, data path, cabling, throughput, latency. As an example if customer doesn’t want to string additional cables between the core and edge directors then they can upgrade to higher speed cards (32G FC or 40G FCoE with BiDi ) and get double the bandwidth on the on the existing cable plant.

Edge Core Design Scale UP

Lets look at another example where customer wants to scale up (i.e. increase the performance of the connections). Lets use a edge core edge design for this example. There are 6144 hosts running at 8Gbps distributed over 10 edge MDS 9710s resulting in a total of 49 Tbps edge bandwidth. Lets assume that this data center is using a oversubscription ratio of 16:1 from edge into the core. To satisfy that requirement administrator designed DC with 2 core switches 192 ports each running at 3Tbps. Lets assume at initial design customer connected 768 Storage Ports running at 8G.

Edge Core Design Day1

 

Few years down the road customer may wants to add additional 6,144 8G ports  and keep the same oversubscription ratios. This has to be implemented in non disruptive manner, without any performance degradation on the existing infrastructure (either in throughput or in latency) and without any constraints regarding protocol, optics and connectivity. In this scenario the host edge connectivity doubles and the edge to core bandwidth increases to 98G. Data Center admin have multiple options for addressing the increase core bandwidth to 6 Tbps.  Data Center admin can choose to add more 16G ports (192 more ports to be precise) or preserve the cabling and use 32G connectivity for host edge to core and core to target edge connectivity on the same chassis. Data Center admin can as easily use the 40G FCoE at that time to meet the bandwidth needs in the core of the network without any forklift. Edge Core Edge Design Scale Out

Or on the other hand customer may wants to upgrade to 16G connectivity on hosts and follow the same oversubscription ratios. . For 16G connectivity the host edge bandwidth increases to 98G and data center administrator has the same flexibility regarding protocol, cabling and speeds.

Edge Core Edge Example 1 ScaleUP

For either option the disruption is minimal. In real life there will be mix of requirements on the same fabric some scale out and some scale up. In those circumstances data center admins have the same flexibility and options. With chassis life of more than a decade it allows customers to upgrade to higher speeds when they need to without disruption and with maximum flexibility. The figure below shows how easily customers can Scale UP or Scale Out.

 

Edge Core Edge Design Scale Out Scale Up

 

As these examples show Cisco MDS solution provides ability for customers to Scale Up or Scale out in flexible, non disruptive way.

“Good design doesn’t date. Bad design does.”
Paul Rand

 

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Digital Design Visual and Otherwise

First impressions really matter. We know this intuitively, and you may also have seen the stats that say it takes web visitors less than two-tenths of a second to form a first impression, and just 2.6 seconds for a user’s eyes to land on that area of a website that most influences their first impression. Visitors make their decisions on whether to stay or leave in 10 seconds or less.

Visual design – the photography, graphics, typography and layout on a page — has a lot to do with initial first impressions that your visitors have. While it’s not the only thing, paying attention to visuals in the right places can have an important impact on how you connect and engage with visitors to your web and mobile experiences.

Last week I was on an interesting panel that included some colleagues in digital design from other companies: A well known express shipper, a major wireless provider, a cutting edge design firm. We talked a lot about what makes visual designs work. Then, we talked even more about other factors beyond visuals that are required to make an experience effective.

Where Strong Visuals Matter

Strong visual designs are immensely important in attracting attention and engaging users, especially where they’re new to your brand and company or organization. At Cisco, we have examples of this in our home page, immersive experiences around specific topics such as Internet of Everything and many other places.

A sampling of some of the visual designs in our Cisco.com and mobile digital space.

A sampling of some of the visual designs in our Cisco.com and mobile digital space.

Good and consistent visual design does great things: It helps to quickly establish trust with your brand. It orients people. It keeps your visitors engaged. A good visual design can lead users to the right places on the page, and help them make decisions.

Simplicity Counts

Visual designs don’t need to be extreme or snazzy to be effective: You can use good simple visual design to lead users to a key call to action. For instance, one of our panel members pointed out that good adherence to visual scanning principles makes sure that button and other key elements are obvious, raising the probably that users will engage.  Another follows a strategy of using visual and interactivity and make sure the online experience is enjoyable, fun and efficient.

One of our panelists pointed out that users tend to scan a page in an “F” pattern, looking across the top, down the left side, and the slightly lower and horizontally on the page again. This remains true even with tablets, and probably works the same way even in the horizontal themes that are emerging, such as Wired.co.uk’s new home page design.

OK, but something all of us panelists emphasized is that visuals are just a piece of the digital experience. We all also have many important “boring” pages where visuals are more muted but where principles of good design are essential.

For instance, the visual treatment of this simple search results box below, while perhaps aesthetically “boring,” results in a very effective design that collects the most important information around a product all in one place, lays it out in a very scannable format, and makes it obvious how to connect with someone at Cisco to find out more information.

The search results box on Cisco.com.

The search results box on Cisco.com.

While simple, this is an effective design for our customers and partners who are often working on problems on deadline and need information quickly, unencumbered with fancy visuals or other distractions.

Some Tips From Our Panel

That simple search results design above gets to the heart of the matter: “Design” is much more than bold visuals, and in any design project you should tune your visual design to the user’s goals and the task at hand. Here are some points for the panel:

Design end to end – When you’re design a new experience, think about the entire experience from someone searching on Google or Bing to landing on a mobile page to the offline interactions they may have in between. This experience should “designed” end to end and not just a screen at a time.

Design for actual people – Use personas or other techniques to design for real types or users who are completing real tasks.

Do Some Wireframing and IA up front – Use basic wireframes (simple diagrams of your pages/screens) or concept drawings to articulate the basics of an experience before you dive into an extensive visual design. (but see the next item)

But, visual comps can help – A corollary to the notion of wireframing is to have some strong visual comps on hand that you can show to your sponsors or decision makers. Sadly, black and white wireframes won’t convey the fireworks they’re expecting.

Don’t throw away common sense visual design rules: With today’s poster-oriented page layouts, often assembled with mix-and-match panels, it’s tempting to allow a random quilt to emerge on pages rather than a holistic design. But, with a good visual system, you can balance fidelity of the visuals: Create a design system with a good strong blend of iconography, infographics, photos and the information itself. Avoid blending incompatible styles and leverage modules and patterns to make things easier on your designers and agencies.

 

Embrace change, prototype quickly, be agile – With almost every project now, we create quick prototypes to understand how the designs will work. These are also good tools for testing with users, and demonstrating ideas to our stakeholders.

 

Test and learn – As you have protoypes ready or finished live implementations online, test and tune your designs. And then test some more to optimize. There are a number of tools at your disposal for this, including well-crafted A/B tests (including control groups), usability testing through online self-service or facilitate sessions, five second tests, and other techniques.

Finally: Don’t create a monster you can’t feed – This is perhaps the most important rule of all, and one that it’s hard to convince teams about until they’ve lived through a few projects: You may have the most splendorous design in the world, but if it is hard to update or expensive to maintain, it will quickly go stale and obsolete. To use a real estate analogy, don’t build a 30-room mansion if you can only afford to maintain a small bungalow.  Think through the ongoing costs of production, localization, management and other factors when you create a new design. It’s important not only that a design look good and work well, but that it’s maintainable.

Above all, beware of projects that start out with the main requirement to “do something cool.” If you focus on the true business and user outcomes you want – and follow the advice above – you will like end up with something not only cool but useful.

What have been your experiences?

Some references:

Digital Information World: Infographic on attention spans online

Missouri Science & Technology: First impressions form quickly on the web

Wired UK: How Wired built the new Wired.co.uk homepage

Tags: , ,