Cisco Blogs


Cisco Blog > Inside Cisco IT

How Does Enterprise IT Respond to Consumerization? To Mac, BYOD, and Whatever Comes Next?

There’s a new force changing the way Cisco IT operates, the way we plan and develop new services, and the way we support our employees. Consumerization is showing us how to help our employees to be more productive and more satisfied – if we can learn to listen and respond. Read More »

Tags: , , , , , , , , , , , ,

The Consumerization of Popcorn… and IT

May 21, 2012 at 6:58 am PST

Technology continues to change not only the tools we use, but the language we use to describe it. Wikipedia describes consumerization as:

…an increasingly accepted term used to describe the growing tendency for new information technology to emerge first in the consumer market and then spread into business and government organizations.

Consumerization absolutely affects technology, but confining the definition to information technology too narrowly defines it. The etymology pins the emergence of the term itself as early as 2001, which is a long time in dog years and at least a half century in technology. But the concept goes back far before Y2K. I could delve into Eli Whitney’s cotton gin, but I’ll stick to less distant history.

Before we get to IT, consider the impact of consumerization on time and choice.

Consumerization & Time
In some ways, our experiences with consumer technology have changed the very speed at which we live our lives. We don’t make time for things the way we used to. We want them now.

It’s the popcorn. OK, it’s the microwave oven. Food is both a human necessity and great motivator. The microwave changed our concept of time and convenience. We haven’t abandoned traditional cooking, but how often do you compare the conventional-oven directions to those for the microwave and think, “I want this to take 45 minutes, 3 minutes just isn’t long enough to wait”?

Popcorn showcases the evolution of our concept of time. Once upon a time, popcorn preparation was at least a 12.4-minute process, start to finish, including the ceremonial melting of butter and cleanup. Plus it required mastering the technique of keeping the pan in constant movement, carefully timing removal to optimize the number of kernels popped.

The mid-1970s arrival specialized popcorn appliances and Jiffy Pop brought popcorn faster and required less clean-up time, while largely eliminating the need for technique. Satisfaction came more quickly and with reduced effort.

And then came the microwave oven and magical little flat packages that fluffed up with aromatic salty goodness in three minutes. Clean up consisted of wiping the buttery stuff off your hands and tossing the bag in the trash. Instant gratification. Near zero effort. Our concept of time? Changed forever.

Read More »

Tags: , , , , , , , ,

Unifying the Business and Technology Architectures (Video)

May 11, 2012 at 9:53 am PST

Rebecca Jacoby, Senior Vice President and Chief Information Officer, introduces a series of technology responses that Cisco has made to accommodate major market trends, including sustainable productivity, globalization, and the consumerization of IT. The responses involved unifying the business and technology architectures at Cisco to help create strategies around collaboration, widespread virtualization, and mobility. These efforts have resulted in immersive collaboration, Cisco’s cloud, and the connected experience, respectively. Read More »

Tags: , , , , , , , , , ,

On Consumerisation, Spatial Streams and Why RF Matters

The devil, as they say, is in the details.

One of the key tenets of engineering is to reduce complexity, but in doing so it is important to understand the implications. While we might try to view one technology as it relates to another to help us simplify the details, it is important that we recognise how and where they differ.

Case in point.

When it comes to wireless networks, I often talk about how there are two questions I dislike being asked more than any others:

  1. How many clients can connect to an access point?
  2. What is the maximum range of an access point?

The reason is that I believe they are the wrong questions. They are being asked from perspective of someone trying to relate to a wireless network as if it were a wired network. What they are really asking is “how many switch ports do I need to cover this area?”

But wireless networks are not switched networks. While each connected device in a wired network has its own physical cable, and thereby its own gigabit Ethernet link, in a wireless network, every device connected to a particular access point shares the same RF spectrum, the same total available bandwidth.

For a standard access point in today’s deployments, that means a maximum total bandwidth of 144Mbps on the 2.4GHz band with a 20MHz channel and 300Mbps on the 5GHz band with a 40MHz channel using channel bonding.

But that is an over simplification.

Those aggregate bandwidths assume each client is connected at the highest available data rate. As we increase range, however, the data rate decreases, thereby reducing the overall channel utilisation. Therefore, with fewer access points, we are not just sharing a limited amount of bandwidth with more clients, but we are actually reducing the total available bandwidth.

Interference, particularly as access points cover larger areas, becomes an even greater issue. An increase in the signal to noise ratio leads to a decrease in the maximum sustainable data rate. This again reduces the overall channel utilisation.  The key here is that a wireless network’s ability to not only detect, but where possible mitigate interference is critical to its ability to sustain higher data rates and maximise the total available bandwidth in each cell.

All this assumes that the wireless clients connecting to the network are even capable of supporting those high data rates.

Most smartphones on the market today support only 802.11g in the 2.4GHz band, meaning that at most they can support 54Mbps.

Newer devices, such as the iPhone 4, support 802.11n, but only in 2.4GHz, and only with a single antenna, limiting them to a single “spatial stream”—in simple terms that means the maximum data rate they can support is 72Mbps.

This applies to tablet devices as well. While the new iPad2 supports 802.11n in both the 2.4GHz and 5GHz band, it too is limited to a single spatial stream. The Cius goes one step further with support for channel bonding in 5GHz, increasing the maximum data rate to 150Mbps.

Interestingly, we are now starting to see new access points enter the market using Atheros’ first-generation silicon supporting three spatial streams. While this increases the maximum data rate in the 5GHz band to 450Mbps, as we have just seen, this will have no impact on the multitude of mobile devices given their single spatial stream limitation.

Three spatial streams represents a key milestone for the 802.11 standard, and will become increasingly important over the next 2 to 3 years as battery technology improves and wireless chipsets incorporate better power saving designs. Of course, by that time we will be looking at access points supporting four spatial streams and 600Mbps—and again, be waiting for the mobile devices to catch up.

Adding to the complexity in all this are the applications these devices are running across the network. From FaceTime and Skype, to Business Video and Personal Telepresence, voice, and video in particular, are replacing data as the primary traffic type. However, the wireless networks that have been built over the last several years were not designed for voice and video, and certainly not at the device densities we are now seeing.

As we look to support these many different mobile devices entering the market today along with their high bandwidth applications, clearly the two key areas we must consider in our wireless network designs are access point density to control cell sizes, and interference detection and mitigation capabilities to ensure that we maximise the channel utilisation in each cell.

And so, I’d like to propose two different questions to consider at the start of a wireless deployment:

  1. How many different devices do you expect to connect to the wireless network?
  2. And what are the applications that will run across the network and what are their associated bandwidth requirements?

Wireless and wired networks fundamentally differ at the physical layer. While its not necessarily important to understand the details of RF communications, it is important to understand the implications.

RF Matters.

Stay mobile. Stay secure.

—Mark

Tags: , , , , , , , ,

Out of Control User = Frenetic IT

When you access your email each day, do you do so at a distance of 15 paces because you’re just not sure what might jump out of that inbox? You can just about anticipate an email detailing how another user has caused a “blip” that will stretch your capabilities to protect both the user during their online engagements and the assets of the company? Or perhaps, there will be an email asking to set up a meeting of all-concerned to discuss how the employees in the sales department believe your information security policies are standing between them and their ability to do their job. Whose responsibility is it to keep the user engaged, informed, and compliant with company policy? Odds are, information technology leads will find their constituents asking how to accomplish something that wasn’t anticipated when the policies were created.

In a previous blog “When Your Employee Doesn’t Want to Come to the Office,” I shared my thoughts on the mobility aspects of the employee who wishes to work remotely. Today Cisco released part two of the Cisco Connected World Report and confirmed my hypothesis above: email inboxes are overflowing and IT departments are racing to catch up as the consumerization of the work place continues. Reading part two of the report, I was encouraged to see that more than 80 percent of IT department respondents noted they had an IT policy. What I found disheartening was the results from the end user, which detailed that ~24 percent of respondents didn’t know a policy existed, let alone where to find it. If that is the case, the escalation of policy collision isn’t going to occur.

Read More »

Tags: , , , , , , , , ,