Cisco Blogs


Cisco Blog > Data Center and Cloud

The Benefits of an Application Policy Language in Cisco ACI: Part 4 – Application Policies for DevOps

October 21, 2014 at 5:00 am PST

[Note: This is the last installment of a four-part series on the OpFlex protocol in Cisco ACI, how it enables an application-centric policy model, and why other SDN protocols do not.  Part 1 | Part 2 | Part 3]

As noted earlier in this series, modern DevOps applications such as Puppet, Chef, and CFEngine have already moved toward the declarative model of IT automation, so there is already some obvious synergy between DevOps and the Cisco ACI policy model. DevOps automation products are also optimizing application delivery processes and are designed to automate critical IT tasks to make the organization more agile and efficient.

In an early 2014 blog post, Andi Mann, vice president of strategic solutions at CA Technologies, wrote about the evolution to DevOps and the synergy with the Cisco ACI policy model:

Though the DevOps approach of today—with its notable improvements to culture, process, and tools—certainly delivers many efficiencies, automation and orchestration of hardware infrastructure has still been limited by traditional data center devices, such as servers, network switches and storage devices. Adding a virtualization layer to server, network, and storage, IT was able to divide some of these infrastructure devices, and enable a bit more fluidity in compute resourcing, but this still comes with manual steps or custom scripting to prepare the end-to-end application infrastructure and its networking needs used in a DevOps approach.

The drag created by these traditional application infrastructures has been somewhat reduced by giving that problem to cloud providers, but in reality this drag never really went away until Cisco innovated application-centric programmability with Cisco ACI. This innovative new solution is now poised to greatly benefit the whole application economy, especially management of the DevOps application environment…

Read More »

Tags: , , , , , , , , ,

The Benefits of an Application Policy Language in Cisco ACI: Part 3 – Group Policies

October 17, 2014 at 5:00 am PST

[Note: This is the third a four-part series on the OpFlex protocol in Cisco ACI, how it enables an application-centric policy model, and why other SDN protocols do not. Part 1 | Part 2 | Part 4]

The Cisco ACI fabric is designed as an application-centric intelligent network. The Cisco APIC policy model is defined from the top down as a policy enforcement engine focused on the application itself and abstracting the networking functions underneath. The policy model unites with the advanced hardware capabilities of the Cisco ACI fabric underlying the business-application-focused control system.

The Cisco APIC policy object-oriented model is built on the distributed policy enforcement concepts for intelligent devices enabled by OpFlex and characterized by modern development and operations (DevOps) applications such as Puppet and Chef.

At the top level, the Cisco APIC policy model is built on a series of one or more tenants, which allows the network infrastructure administration and data flows to be segregated. Tenants can be customers, business units, or groups, depending on organization needs. Below tenants, the model provides a series of objects that define the application itself. These objects are endpoints and endpoint groups (EPGs) and the policies that define their relationships (see figure below). The relationship between two endpoints, which might be two virtual machines connected in a three-tier web application, can be implemented by routing traffic between the endpoints to firewalls and ADCs that enforce the appropriate security and quality of service (QoS) policies for the application and those endpoints.

Endpoint Group Policy

Endpoints and Application Workloads Along with Tenants and Application Network Profiles Are the Foundation of the Cisco ACI Policy ModelEndpoints and Application Workloads Along with Tenants and Application Network Profiles Are the Foundation of the Cisco ACI Policy Model

For a more thorough description of the Cisco ACI application policy model, please refer to this whitepaper, or this one more specifically on Endpoint Groups.

For this discussion, the important feature to notice is the way that Cisco ACI policies are applied to application endpoints (physical and virtual workloads) and to EPGs. Configuration of individual network devices is ancillary to the requirements of the application and workloads. Individual devices do not require programmatic control as in prior SDN models, but are orchestrated according to the centrally defined and managed policies and according to application policies.

This model is catching hold in the industry and in the open source community. The OpenStack organization has begun work on including group-based policies to extend the OpenStack Neutron API for network orchestration with a declarative policy-based model based closely on EPG policies from Cisco ACI. (Note: “Declarative” refers to the orchestration model in which control is distributed to intelligent devices based on centralized policies, in contrast to retaining per-flow management control within the controller itself.)

Read More »

Tags: , , , , , , , ,

The Benefits of an Application Policy Language in Cisco ACI: Part 2 – The OpFlex Protocol

October 14, 2014 at 5:00 am PST

[Note: This is the second of a four-part series on the OpFlex protocol in Cisco ACI, how it enables an application-centric policy model, and why other SDN protocols do not.  Part 1 | Part 3 | Part 4]

Following on from the first part of our series, this blog post takes a closer look at some of these architectural components of Cisco ACI and the VMware NSX software overlay solution to quantify the advantages of Cisco’s application-centric policies and demonstrate how the architecture supports greater scale and more robust IT automation.

As called for in the requirements listed in the previous section, Cisco ACI is an open architecture that includes the policy controller and policy repository (Cisco APIC), infrastructure nodes (network devices, virtual switches, network services, etc.) under Cisco APIC control, and a protocol communication between Cisco APIC and the infrastructure. For Cisco ACI, that protocol is OpFlex.

OpFlex was designed with the Cisco ACI policy model and cloud automation objectives in mind, including important features that other SDN protocols could not deliver. OpFlex supports the Cisco ACI approach of separating the application policy from the network and infrastructure, but not the control plane itself. This approach provides the desired centralization of policy management, allowing automation of the entire infrastructure without limiting scalability through a centralized control point or creating a single point of catastrophic failure. Through Cisco ACI and OpFlex, the control engines are distributed, essentially staying with the infrastructure nodes that enforce the policies.

Read More »

Tags: , , , , , , ,

The Benefits of an Application Policy Language in Cisco ACI: Part 1 – Enabling Automation

October 10, 2014 at 5:00 am PST

[Note: This is the first of a four-part series on the OpFlex protocol in Cisco ACI, how it enables an application-centric policy model, and why other SDN protocols do not.  Part 2 | Part 3 | Part 4]

IT departments and lines of business are looking at cloud automation tools and software-defined networking (SDN) architectures to accelerate application delivery, reduce operating costs, and increase business agility. The success of an IT or cloud automation solution depends largely on the business policies that can be carried out by the infrastructure through the SDN architecture.

Through a detailed comparison of critical architectural components, this blog series shows how the Cisco Application Centric Infrastructure (ACI) architecture supports a more business-relevant application policy language, greater scalability through a distributed enforcement system rather than centralized control, and greater network visibility than alternative software overlay solutions or traditional SDN designs.

Historically, IT departments have sought out greater automation as device proliferation has accelerated to overcome the challenges of applying manual processes for critical tasks. About 20 years ago the automation of desktop and PC management was an imperative, and about 10 years ago server automation became important as applications migrated to larger numbers of modular x86 and RISC-based systems. Today, with the consolidation of data centers, IT must address not only application and data proliferation, but also the emergence of large scale application virtualization and cloud deployments, requiring IT to focus on cloud and network automation.

The emergence of SDN promised a new era of centrally managed, software-based automation tools that could accelerate network management, optimization, and remediation. Gartner has defined SDN as “a new approach to designing, building and operating networks that focuses on delivering business agility while lowering capital and operational costs.” (Source: “Ending the Confusion About Software-Defined Networking: A Taxonomy”, Gartner, March 2013)

Furthermore, Gartner, in an early 2014 report (“Mainstream Organizations Should Prepare for SDN Now”, Gartner, March 2014), notes that “SDN is a radical new way of networking and requires senior infrastructure leaders to rethink traditional networking practices and paradigms.” In this same report, Gartner makes an initial comparison of mainstream SDN solutions that are emerging, including VMware NSX, and Cisco ACI. There has been some discussion whether Cisco ACI is an SDN solution or something more, but most agree that, in a broad sense, the IT automation objectives of SDN and Cisco ACI are basically the same, and some of the baseline architectural features, including a central policy controller, programmable devices, and use of overlay networks, lead to a useful comparison.

This blog series focuses on the way that Cisco ACI expands traditional SDN methodology with a new application-centric policy model. It specifically compares critical protocols and components in Cisco ACI with VMware NSX to show the advantages of Cisco ACI over software overlay networks and the advantages of the ACI application policy model over what has been offered by prior SDN solutions. It also discusses what the Cisco solution means for customers, the industry, and the larger SDN community.

Read More »

Tags: , , , , , , ,

VCE Refreshes Vblock Portfolio with New Cisco UCS servers

Five years ago, VCE was created with the goal of providing a simple, efficient solution to deploy and run IT infrastructure. VCE’s Vblock Systems have enabled customers to focus on business innovation instead of integrating, validating, and managing IT infrastructure. It would be an understatement to say VCE has been successful.  Last year, Vblock Systems, built on Cisco UCS integrated infrastructure, surpassed their 2013 goal of $1 billion in annual sales and was recognized as a leader inthe integrated infrastructure market. In fact, in Gartner’s inaugural Magic Quadrant for integrated systems, VCE Vblock Systems is rated in the Leaders Quadrant, based on the tight integration of industry and market leading technologies from Cisco and EMC.

Today, VCE announced a major update and expansion to their Vblock Systems portfolio using the latest Cisco UCS servers and Cisco ACI-Ready switches. The new Cisco M4 model servers recently celebrated four world-records benchmarks, offering performance improvements up to 145 percent since the last processor generation. Customers can be confident that Cisco UCS servers will deliver outstanding application performance as part of a Vblock System. IT leaders want to accelerate infrastructure and application deployment and these new ACI-Ready Vblock Systems are an extension of Cisco’s application-centric data center strategy. We feel our application-centric approach, where the automated configuration of IT infrastructure in sync with the needs of the application, is essential to keeping pace with todays dynamic business priorities.

VCE also announced a cloud management solution with Cisco UCS Director.  VCE’s Integrated Solution for Cloud Management with Cisco pre-integrates UCS Director with a Vblock System, providing the capability to quickly instantiate an initial private cloud foundation for customer environments. UCS Director enables the automation and provisioning of compute, network, and storage resources, both physical and virtual. This automation of integrated infrastructure can further expedite the deployment of application-ready infrastructure.

Cisco is excited that our new products and technologies have been integrated into the Vblock portfolio and congratulate the VCE team on today’s announcement. We believe these new Vblock Systems and solutions will make it easier for customers to deliver the performance, agility, and availability for the most demanding applications.

Tags: , , , , ,