Cisco Blogs


Cisco Blog > Data Center and Cloud

SDN for Universities: Campus Slicing 101

June 27, 2012 at 4:00 am PST

In the wake of our Open Network Environment (Cisco ONE) announcements, we are continuing our series on software defined networking (SDN) use cases, this time focusing on the primary use case for OpenFlow and universities, campus network slicing. If interested, a more detailed solution brief on this scenario and the Cisco SDN OpenFlow controller can be found here. And check out our demo video below.

Campus Slicing diagramUniversity campus networks offer an increasingly wide array of networking services to one of the broadest user bases of any “enterprise.” Some universities have medical or high-security facilities and must maintain regulatory compliance accordingly. Student networking services vary depending on whether they are on or off campus, and in almost all cases students and faculty bring their own devices. Administration offices must also be able to manage the day-to-day activities of the university. Often event management must include the rapid provisioning of point-of-sale terminal support and back-end payment reconciliation. And faculty must have both data and video access within the university campus, across campuses, and further out to other universities.

As a result, the ability to partition networks (called “slicing”) based on SDN has risen in popularity. Although slicing is being performed today on isolated networks, the need to perform it on production networks is now becoming a priority. Cisco controllers and agents, as part of the Cisco Open Network Environment for network programmability, are aimed at addressing this need.

Much of the early research and collaboration between universities on OpenFlow and SDN has been driven by the adoption of National Science Foundation (NSF) projects such as GENI, an open, collaborative research environment to explore networking at scale.

One of the basic premises of SDN is that the abstraction of control plane management, out of each network device and into a centralized “controller,” can create high business agility through automation with relatively lower OpEx and low risk. SDN is a natural fit for the class of requests universities need to service.

One of the primary components to the emergence of SDN on campuses has been the ability to create logically isolated networks and allow them to be partitioned and programmed using slicing. In SDN, this is facilitated with an abstraction layer in the network device called a flowvisor. Today, many universities use flowvisors within their isolated networks in conjunction with SDN controllers to manage their slicing requirements. In many cases these slicing activities are still performed off the campus backbone, as the software used to implement both the operating systems and slicing functions does not provide the policy management consistency required for production network applications.

Read More »

Tags: , , , , ,