Cisco Blogs

Cisco Blog > Security

Espionage in the Internet Age

If you had asked me a few years ago, I might have predicted that the rise of large scale hacking and network-based Advanced Persistent Threats (APTs) would spell the end of old-school espionage (poison-tipped umbrellas, office break-ins, dangles and the like). Those of us who fancy ourselves logical, savvy cyber security specialists can be forgiven for thinking such analog antics wouldn’t persist in a digital world.

And yet, human espionage remains a nagging issue. A Russian spy ring was disrupted in New York in January. New stories about employees stealing trade secrets from their employers regularly make headlines, such as this one in May. More than one article alleges that Vienna and Lausanne (home to recent Iranian nuclear negotiations) are swarming with spies from Tehran. And these are just the stories that get reported.

There is no question that spycraft is changing with the times. Recent, damaging breaches of US government employee information—amply documented elsewhere—provide some interesting hints as to how: Read More »

Tags: , , , ,

Continuous Protection on the Endpoint: Show Me

Advanced malware is dynamic, elusive, and evasive. Once it slithers into the organization’s extended network, it can very quickly proliferate, cause problems, and remain undetected by traditional point-in-time security tools. These tools poll or scan endpoints for malware or indicators of compromise at a moment in time, and then do not evaluate again until the next big scan is triggered.

To prevent a malware intrusion from becoming a full-fledged and costly breach, it is important to catch that malware as quickly as possible. To do that, you need to go beyond point-in-time tools, and instead continuously watch and analyze all file and program activity throughout your extended network, so that at the first glimpse of malicious behavior you can contain and remediate immediately.

Read More »

Tags: , , , , , ,

Wiper Malware – A Detection Deep Dive

This post was authored by Christopher Marczewski with contributions from Craig WIlliams

*This blog post has been updated to include Command and Control IP addresses used by the malware.

A new piece of wiper malware has received quite a bit of media attention. Despite all the recent press, Cisco’s Talos team has historic examples of this type of malware going back to the 1990s. Data is the new target, this should not surprise anyone. Recent examples of malware effectively “destroying” data – putting it out of victims’ reach – also include Cryptowall, and Cryptolocker, common ransomware variants delivered by exploit kits and other means.

Wiping systems is also an effective way to cover up malicious activity and make incident response more difficult, such as in the case of the DarkSeoul malware in 2013.

Any company that introduced proper back-up plans in response to recent ransomware like Cryptolocker or Cryptowall should already be protected to a degree against these threats. Mitigation strategies like defense in depth will also help minimize the chance of this malware reaching end systems.

The Deep Dive

Initially we started investigating a sample reported to be associated with the incident to improve detection efficacy. Based off our analysis of e2ecec43da974db02f624ecadc94baf1d21fd1a5c4990c15863bb9929f781a0a we were able to link 0753f8a7ae38fdb830484d0d737f975884499b9335e70b7d22b7d4ab149c01b5 as a nearly identical sample. By the time we reached the network-related functions during our analysis, the relevant IP addresses belonging to the C2 servers were no longer responding back as expected. In order to capture the necessary traffic we had to modify both of the aforementioned disk wiper components. One modification replaced one of the hard-coded C2 server IP addresses with a local address belonging to a decoy VM while changing references to the other hard-coded addresses to point to this local address instead. The other modification simply changed the parameter being passed to an instance of the Sleep() function so debugging efforts wouldn’t be put on hold for 45 minutes (the original sample used a 10 minutes sleep).

When we initially examined a rule that was being distributed in the public we were looking for areas where we could improve coverage to better protect our customers. The new Wiper variant is poorly written code and luckily includes very little obfuscation.The author(s) made the mistake of allocating a buffer for the send() function that surpasses the data they wished to include in the payload: a null-terminated opening parentheses byte, the infected host’s local IP address, and the first 15 bytes of the host name. This incorrect buffer allocation results in the desired data, in addition to some miscellaneous data already present on the stack (including the 0xFFFFFFFF bytes we alerted on in the first revision of our rule).

Simply running the disk wiper component on different versions of Windows proves the miscellaneous data from the stack that we onced alerted on only applies to beacons being sent from Win XP hosts:

Read More »

Tags: , , ,

Cisco Coverage for ‘Regin’ Campaign

This post was authored by Alex Chiu with contributions from Joel Esler.

Advanced persistent threats are a problem that many companies and organizations of all sizes face.  In the past two days, information regarding a highly targeted campaign known as ‘Regin’ has been publicly disclosed.  The threat actors behind ‘Regin’ appear to be targeting organizations in the Financial, Government, and Telecommunications verticals as well as targeting research institutions in the Education vertical.  Talos is aware of these reports and has responded to the issue in order to ensure our customers are protected. Read More »

Tags: , , , , ,

Threat Spotlight: Group 72, Opening the ZxShell

This post was authored by Andrea Allievi, Douglas Goddard, Shaun Hurley, and Alain Zidouemba.

Recently, there was a blog post on the takedown of a botnet used by threat actor group known as Group 72 and their involvement in Operation SMN.  This group is sophisticated, well funded, and exclusively targets high profile organizations with high value intellectual property in the manufacturing, industrial, aerospace, defense, and media sector. The primary attack vectors are watering-hole, spear phishing, and other web-based attacks.

Frequently, a remote administration tool (RAT) is used to maintain persistence within a victim’s organization. These tools are used to further compromise the organization by attacking other hosts inside the targets network.

ZxShell (aka Sensocode) is a Remote Administration Tool (RAT) used by Group 72 to conduct cyber-espionage operations. Once the RAT is installed on the host it will be used to administer the client, exfiltrate data, or leverage the client as a pivot to attack an organization’s internal infrastructure.  Here is a short list of the types of tools included with ZxShell:

  • Keylogger (used to capture passwords and other interesting data)
  • Command line shell for remote administration
  • Remote desktop
  • Various network attack tools used to fingerprint and compromise other hosts on the network
  • Local user account creation tools

For a complete list of tools please see the MainConnectionIo section.

The following paper is a technical analysis on the functionality of ZxShell. The analysts involved were able to identify command and control (C2) servers, dropper and installation methods, means of persistence, and identify the attack tools that are core to the RAT’s purpose. In addition, the researchers used their analysis to provide detection coverage for Snort, Fireamp, and ClamAV.

Read More »

Tags: , , , , , , ,