Cisco Blogs

Cisco Blog > Security

Big Data in Security – Part IV: Email Auto Rule Scoring on Hadoop

TRACFollowing part three of our Big Data in Security series on graph analytics, I’m joined by expert data scientists Dazhuo Li and Jisheng Wang to talk about their work in developing an intelligent anti-spam solution using modern machine learning approaches on Hadoop.

What is ARS and what problem is it trying to solve?

Dazhuo: From a high-level view, Auto Rule Scoring (ARS) is the machine learning system for our anti-spam system. The system receives a lot of email and classifies whether it’s spam or not spam. From a more detailed view, the system has hundreds of millions of sample email messages and each one is tagged with a label. ARS extracts features or rules from these messages, builds a classification model, and predicts whether new messages are spam or not spam. The more variety of spam and ham (non-spam) that we receive the better our system works.

Jisheng: ARS is also a more general large-scale supervised learning use case. Assume you have tens (or hundreds) of thousands of features and hundreds of millions (or even billions) of labeled samples, and you need them to train a classification model which can be used to classify new data in real time.


Read More »

Tags: , , , , , , , , , , , , , , , ,

Big Data in Security – Part III: Graph Analytics

TRACFollowing part two of our Big Data in Security series on University of California, Berkeley’s AMPLab stack, I caught up with talented data scientists Michael Howe and Preetham Raghunanda to discuss their exciting graph analytics work.

Where did graph databases originate and what problems are they trying to solve?

Michael: Disparate data types have a lot of connections between them and not just the types of connections that have been well represented in relational databases. The actual graph database technology is fairly nascent, really becoming prominent in the last decade. It’s been driven by the cheaper costs of storage and computational capacity and especially the rise of Big Data.

There have been a number of players driving development in this market, specifically research communities and businesses like Google, Facebook, and Twitter. These organizations are looking at large volumes of data with lots of inter-related attributes from multiple sources. They need to be able to view their data in a much cleaner fashion so that the people analyzing it don’t need to have in-depth knowledge of the storage technology or every particular aspect of the data. There are a number of open source and proprietary graph database solutions to address these growing needs and the field continues to grow.

Graph Read More »

Tags: , , , , , , , , , , , , ,

Big Data in Security – Part II: The AMPLab Stack


Following part one of our Big Data in Security series on TRAC tools, I caught up with talented data scientist Mahdi Namazifar to discuss TRAC’s work with the Berkeley AMPLab Big Data stack.

Researchers at University of California, Berkeley AMPLab built this open source Berkeley Data Analytics Stack (BDAS), starting at the bottom what is Mesos?

AMPLab is looking at the big data problem from a slightly different perspective, a novel perspective that includes a number of different components. When you look at the stack at the lowest level, you see Mesos, which is a resource management tool for cluster computing. Suppose you have a cluster that you are using for running Hadoop Map Reduce jobs, MPI jobs, and multi-threaded jobs. Mesos manages the available computing resources and assigns them to different kinds of jobs running on the cluster in an efficient way. In a traditional Hadoop cluster, only one Map-Reduce job is running at any given time and that job blocks all the cluster resources.  Mesos on the other hand, sits on top of a cluster and manages the resources for all the different types of computation that might be running on the cluster. Mesos is similar to Apache YARN, which is another cluster resource management tool. TRAC doesn’t currently use Mesos.


AMPLab Stack

The AMPLab Statck

Read More »

Tags: , , , , , , , , , , , , , , , , , , ,

Big Data in Security – Part I: TRAC Tools

TRACRecently I had an opportunity to sit down with the talented data scientists from Cisco’s Threat Research, Analysis, and Communications (TRAC) team to discuss Big Data security challenges, tools and methodologies. The following is part one of five in this series where Jisheng Wang, John Conley, and Preetham Raghunanda share how TRAC is tackling Big Data.

Given the hype surrounding “Big Data,” what does that term actually mean?

John:  First of all, because of overuse, the “Big Data” term has become almost meaningless. For us and for SIO (Security Intelligence and Operations) it means a combination of infrastructure, tools, and data sources all coming together to make it possible to have unified repositories of data that can address problems that we never thought we could solve before. It really means taking advantage of new technologies, tools, and new ways of thinking about problems.

Big Data

Read More »

Tags: , , , , , , , , , , , , , , , , , , ,

The Internet of Everything, Including Malware

We are witnessing the growth of the Internet of Everything (IoE), the network of embedded physical objects accessed through the Internet, and it’s connecting new devices to the Internet which may not traditionally have been there before. Unfortunately, some of these devices may be deployed with a security posture that may need improvement.

Naturally when we saw a few posts about multi-architecture malware focused on the “Internet of Things”, we decided to take a look. The issue being exploited in those posts is CVE-2012-1823, which has both an existing Cisco IPS signature as well as some for Snort. It turns out this vulnerability is actually quite heavily exploited by many different worms, and it took quite a bit of effort to exclude all of the alerts generated by other pieces of malware in Cisco IPS network participation. Due to the vulnerability-specific nature of the Cisco IPS signature, the same signature covers this issue as well as any others that use this technique; just one signature provides protection against all attempts to exploit this vulnerability.  As you can see in the graph below this is a heavily exploited vulnerability. Note that these events are any attack attempting to exploit this issue, not necessarily just the Zollard worm.

The graph below is derived from both Cisco IPS and Sourcefire IPS customers. The Cisco data is from customers who have ‘opted-in’ to network participation. This service is not on by default. The Sourcefire data below is derived from their SPARK network of test sensors. This graph is showing the percent increase of alert volume from the normal for each dataset at the specified time.


Read More »

Tags: , , , , , , ,