Cisco Blogs


Cisco Blog > Data Center and Cloud

Cisco Data Virtualization

It is an exciting day for Cisco Data Virtualization, our data integration software that connects all kinds of data from across the network and makes it appear as if it is in one place and in one consolidated view. To see it in action, check out this video on how we replaced Denodo with our own data virtualization technology at Cisco.

Today at Data Virtualization Day, in New York City, I will be joined by customers, partners and industry experts as we launch a major update to our flagship data virtualization platform, Cisco Information Server (CIS). CIS 7.0 will enable IT departments to deliver self-service data access and enable business agility like never before.

My favorite part of Data Virtualization Day is the time I get to spend with our customers and partners, talking about shared successes and upcoming product enhancements. Since joining Cisco through our acquisition of Composite Software in July 2013, data virtualization has been a key piece of our portfolio and is a vital solution to our customers’ challenges brought on by the Internet of Everything (IoE), Cloud and Big Data trends.

Data is exploding now more than ever before. The majority of data is generated automatically by connected devices with up to 50 billion devices expected by the year 2020. The data explosion is the result of the IoE, this hyperconnection of people, process, data, and things that will create new capabilities, richer experiences, and unprecedented economic opportunities for businesses, individuals and countries for those with ‘IoE Ready’ strategies, infrastructure and technical capabilities in place.

Cisco Data Virtualization is a key part of being ‘IoE Ready’ by connecting device data, big data, data in the cloud and traditional enterprise data in new and extraordinary ways. Organizations that tap into this data pool will be able to leverage it strategically to monitor customer sentiment and behaviors; identify market and competitive changes, anticipate market transitions while optimizing performance of assets and operations and achieving the upmost business agility. It will separate the market leaders from the rest of the pack and will turn the challenges of the IoE, Cloud and Big Data into amazing opportunities.

Many organizations are shifting traditional data center environments to cloud data environments in order to optimize data center investment, leading to more hybrid IT environments. Cisco Data Virtualization truly enables a hybrid IT model by helping our customers live in a “world of many clouds” – connecting people, communities and organizations with intelligent networking capabilities that unify resources within and between data centers and across clouds. Now our customers can deploy any hybrid IT mix they desire while retaining the access and insights they require and free from the constraints of traditional data center operations and economics.

With the pace of worldwide data growth accelerating; organizations using innovative methods for storing, accessing and analyzing data will thrive amongst their competition. There has never been a more exciting time in the history of technology, and data virtualization is at the heart of how our customers are gaining a business advantage from all of the new data at their fingertips.

Happy Data Virtualization Day!

 

Learn More

To learn more about Cisco Data Virtualization, check out our page

Join the Conversation

Follow @CiscoDataVirt #DVDNYC

Tags: , , , , ,

Security for an Application-Centric World

October 1, 2014 at 5:00 am PST

Organizations are migrating to the cloud because it dramatically reduces IT costs as we make much more efficient use of resources (either ours or by leveraging some cloud provider’s resources at optimal times). When done right, cloud also increases business agility because applications and new capacity can be spun up quickly on demand (on-premises or off), network and services configurations can be updated automatically to suit the changing needs of the applications, and, with enough bacon, unicorns can fly and the IT staff can get home at a reasonable hour.

Whenever you ask a CIO-type at any of these organizations what’s holding them back from all this cloud goodness, though, more often than not the answer has something to do with security: “Don’t trust the cloud…”, “Don’t trust the other guy in the cloud…”, “Cloud’s not compliant…”.  You have to be something of a control freak to be a CIO/CISO these days, and, well, isn’t “cloud” all about giving up some control, after all (in return for efficiency and agility)?

Even if you overcome your control issues and you find a cloud you can trust (even if it’s your own private cloud – we can take baby steps here…), if we are going to achieve our instant on-demand application deployment, network provisioning and cost-efficient workload placement process, it turns out all the security stuff can throw another obstacle in our way. Cloud security isn’t like old-fashioned data center security where you could just put a huge firewall in front of the data center and call it good. For secure multi-tenancy and a secure cloud overall, virtually every workload (or “every virtual workload”?) needs to be secured from every other (except for the exceptions we want to make). Some folks call this “microsegmentation”, a fancy word for an old concept, but, a fundamental requirement that cloud deployments need to address. (Spoiler alert: ACI does this very well.) Read More »

Tags: , , ,

New Nexus 9300 Switches join the Nexus 9000 Series

It’s an exciting time in to be in our industry, especially as we witness how technology continues to reshape how we connect and communicate through a myriad of applications and devices not only within our own companies, but also with our customers and partners.

At the epicenter of this technological transformation, we continue to find that the network is what ultimately enables these applications and their users to connect. We also quickly find that if this same network is not ready to deal with the ever increasing influx of devices, new applications with varying traffic patterns, and 24  x 7 access from pretty much anywhere, it can quickly turn into an IT departments nightmare.

It is exactly to deal with these new types of requirements that the award-winning Nexus 9000 Series (made up of both the Nexus 9500 and Nexus 9300 portfolios) was introduced into the market almost 11 months ago. Now, over 600 customers have purchased this new switching family and are experiencing the positive impact that having a high performing, scalable, programmable, and resilient data center network has on application performance and overall user quality of experience in both traditional and Application Centric Infrastructure (ACI) architectures.

Today we are happy to announce the addition of three new switches into the Nexus 9300 Series as well as a 6-port 40Gbps module to deliver more flexibility and form factor options to meet different architectural needs.  The new products are:

  • Cisco Nexus 9372TX: 1-rack-unit switch supporting 1.44 Tbps of bandwidth across 48 fixed 1/10-Gbps BASE-T ports and 6 fixed 40-Gbps QSFP+ ports
  • Cisco Nexus 9372PX: 1-rack-unit switch supporting 1.44 Tbps of bandwidth across 48 fixed 1/10-Gbps SFP+ ports and 6 fixed 40-Gbps QSFP+ ports
  • Cisco Nexus 9332PQ: 1-rack-unit switch supporting 2.56 Tbps of bandwidth across 32 x 40Gbps QSFP+ ports
  • 6-port 40 Gigabit Ethernet Module for the Nexus 93128TX, 9396TX , and 9396PX for connectivity options to meet your needs

These new switches deliver high performance, additional buffers, as well as support for VXLAN routing in a compact form factor. In addition to this, support for the Cisco Nexus 2000 Fabric Extenders has also been added to the Nexus 9300 portfolio. So if you already had Fabric Extenders in your data center or are looking for a scalable and operationally simplified architecture – you can now have the best of both worlds.

But it doesn’t end there – in case you missed it, Cisco recently announced the availability of the Application Policy Infrastructure Controller (APIC) making the creation of a more simplified, robust, application-centric infrastructure  a reality with the Nexus 9000 Series as the network foundation. You can read more about it here – in Craig Huitema’s blog, which outlines not only new products on the nexus 9000 series including 100Gbps on the Nexus 9500, but also how we have simplified the introduction of the Nexus 9000 and ACI into data centers through different ACI starter kits and bundles. In addition, for those of you that want to deploy the Nexus 7000 in combination with the Nexus 9300s, new bundles that bring together the Nexus 7000 and Nexus 9300 are also available.

As you can see, we continue to deliver the products and architectural options that will allow data centers of all sizes to address increasing and changing application requirements.  Between the Nexus 9300 and Nexus 9500 portfolios and their ability to be deployed into 3-tier, spine/leaf, or ACI architectures, customers can benefit from more connectivity options and a diverse set of form factors to meet varying data center needs. I invite you to learn more about the Nexus 9000 Series at www.cisco.com/go/nexus9000.

Tags: , , , , , ,

Turbocharging new Hadoop workloads with Application Centric Infrastructure

At the June Hadoop Summit in San Jose, Hadoop was re-affirmed as the data center “killer app,” riding an avalanche of Enterprise Data, which is growing 50x annually through 2020.  According to IDC, the Big Data market itself growing six times faster than the rest of IT. Every major tech company, old and new, is now driving Hadoop innovation, including Google, Yahoo, Facebook Microsoft, IBM, Intel and EMC – building value added solutions on open source contributions by Hortonworks, Cloudera and MAPR.  Cisco’s surprisingly broad portfolio will be showcased at Strataconf in New York on Oct. 15 and at our October 21st executive webcast.  In this third of a blog series, we preview the power of Application Centric Infrastructure for the emerging Hadoop eco-system.

Why Big Data?

Organizations of all sizes are gaining insight and creativity into use cases that leverage their own business data.

BigDataUseCaseTable

The use cases grow quickly as businesses realize their “ability to integrate all of the different sources of data and shape it in a way that allows business leaders to make informed decisions.” Hadoop enables customers to gain insight from both structure and unstructured data.  Data Types and sources can include 1) Business Applications -- OLTP, ERP, CRM systems, 2) Documents and emails 3) Web logs, 4) Social networks, 5) Machine/sensor generated, 6) Geo location data.

IT operational challenges

Even modest-sized jobs require clusters of 100 server nodes or more for seasonal business needs.  While, Hadoop is designed for scale out of commodity hardware, most IT organizations face the challenge of extreme demand variations in bare-metal workloads (non-virtualizable). Furthermore, they are requested by multiple Lines of Business (LOB), with increasing urgency and frequency. Ultimately, 80% of the costs of managing Big Data workloads will be OpEx. How do IT organizations quickly, finish jobs and re-deploy resources?  How do they improve utilization? How do they maintain security and isolation of data in a shared production infrastructure?

And with the release of Hadoop 2.0 almost a year ago, cluster sizes are growing due to:

  • Expanding data sources and use-cases
  • A mixture of different workload types on the same infrastructure
  • A variety of analytics processes

In Hadoop 1.x, compute performance was paramount.  But in Hadoop 2.x, network capabilities will be the focus, due to larger clusters, more data types, more processes and mixed workloads.  (see Fig. 1)

HadoopClusterGrowth

ACI powers Hadoop 2.x

Cisco’s Application Centric Infrastructure is a new operational model enabling Fast IT.  ACI provides a common policy-based programming approach across the entire ACI-ready infrastructure, beginning with the network and extending to all its connected end points.  This drastically reduces cost and complexity for Hadoop 2.0.  ACI uses Application Policy to:

-          Dynamically optimize cluster performance in the network
-          Redeploy resources automatically for new workloads for improved utilization
-          Ensure isolation of users and data as resources are deployments change

Let’s review each of these in order:

Cluster Network Performance: It’s crucial to improve traffic latency and throughput across the network, not just within each server.

  • Hadoop copies and distributes data across servers to maximize reliability on commodity hardware.
  • The large collection of processes in Hadoop 2.0 are usually spread across different racks.
  • Mixed workloads in Hadoop 2.0, support interactive and real-time jobs, resulting in the use of more on-board memory and different payload sizes.

As a result, server IO bandwidth is increasing which will place loads on 10 gigabit networks.  ACI policy works with deep telemetry embedded in each Nexus 9000 leaf switch to monitor and adapt to network conditions.

HadoopNetworkConditions

Using policy, ACI can dynamically 1) load-balance Big Data flows across racks on alternate paths and 2) prioritize small data flows ahead of large flows (which use the network much less frequently but use up Bandwidth and Buffer). Both of these can dramatically reducing network congestion.  In lab tests, we are seeing flow completion nearly an order of magnitude faster (for some mixed workloads) than without these policies enabled.  ACI can also estimate and prioritize job completion.  This will be important as Big Data workloads become pervasive across the Enterprise. For a complete discussion of ACI’s performance impact, please see a detailed presentation by Samuel Kommu, chief engineer at Cisco for optimizing Big Data workloads.

 

Resource Utilization: In general, the bigger the cluster, the faster the completion time. But since Big Data jobs are initially infrequent, CIOs must balance responsiveness against utilization.  It is simply impractical for many mid-sized companies to dedicate large clusters for the occasional surge in Big Data demand.   ACI enables organizations to quickly redeploy cluster resources from Hadoop to other sporadic workloads (such as CRM, Ecommerce, ERP and Inventory) and back.  For example, the same resources could run Hadoop jobs nightly or weekly when other demands are lighter. Resources can be bare-metal or virtual depending on workload needs. (see Figure 2)

HadoopResourceRedeployment

How does this work? ACI uses application policy profiles to programmatically re-provision the infrastructure.  IT can use a different profile to describe different application’s needs including the Hadoop eco-system. The profile contains application’s network policies, which are used by the Application Policy Infrastructure controller in to a complete network topology.  The same profile contains compute and storage policies used by other tools, such as Cisco UCS Director, to provisioning compute and storage.

 

Data Isolation and Security: In a mature Big Data environment, Hadoop processing can occur between many data sources and clients.  Data is most vulnerable during job transitions or re-deployment to other applications.  Multiple corporate data bases and users need to be correctly to ensure compliance.   A patch work of security software such as perimeter security is error prone, static and consumes administrative resources.

ACI_SecurityImperatives

 

In contrast, ACI can automatically isolate the entire data path through a programmable fabric according to pre-defined policies.  Access policies for data vaults can be preserved throughout the network when the data is in motion.  This can be accomplished even in a shared production infrastructure across physical and virtual end points.

 

Conclusion

As organizations of all sizes discover ways to use Big Data for business insights, their infrastructure must become far more performant, adaptable and secure.  Investments in fabric, compute and storage must be leveraged across, multiple Big Data processes and other business applications with agility and operational simplicity.

Leading the growth of Big Data, the Hadoop 2.x eco-system will place particular stresses on data center fabrics. New mixed workloads are already using 10 Gigabit capacity in larger clusters and will soon demand 40 Gigabit fabrics.  Network traffic needs continuous optimization to improve completion times.  End to end data paths must use consistent security policies between multiple data sources and clients.  And the sharp surges in bare-metal workloads will demand much more agile ways to swap workloads and improve utilization.

Cisco’s Application Centric Infrastructure leverages a new operational and consumption model for Big Data resources.  It dynamically translates existing policies for applications, data and clients in to fully provisioned networks, compute and storage. .  Working with Nexus 9000 telemetry, ACI can continuously optimize traffic paths and enforce policies consistently as workloads change.  The solution provides a seamless transition to the new demands of Big Data.

To hear about Cisco’s broader solution portfolio be sure to for register for the October 21st executive webcast  ‘Unlock Your Competitive Edge with Cisco Big Data Solutions.’  And stay tuned for the next blog in the series, from Andrew Blaisdell, which showcases the ability to predictably deliver intelligence-driven insights and actions.

Tags: , , , , , ,

NetApp and Cisco Deliver Extreme Performance For Oracle Database

September 30, 2014 at 8:00 am PST

Guest post by Aaron Newcomb, Solutions Marketing Manager, NetApp

FlexPodNo one wants the 2:00 am distressed phone call disturbing a good night’s sleep. For IT Managers and Database Administrators that 2:00 am call is typically bad news regarding the systems they support. Users in another region are not able to access an application. Customers are not placing orders because the system is responding too slowly. Nightly reporting is taking too long and impacting performance during peak business hours. When your business critical applications running on Oracle Database are not performing at the speed of business that creates barriers to customer satisfaction and remaining competitive. NetApp wants to help break down those barriers and help our customers get a good night sleep instead of worrying about the performance of their Oracle Database.

NetApp today unveiled a solution designed to address the need for extreme performance for Oracle Databases with FlexPod Select for High Performance Oracle RAC. This integrated infrastructure solution offers a complete data center infrastructure including networking, servers, storage, and the management software you need to run your business 24x7 365 days a year. Since NetApp and Cisco validate the architecture you can deploy your Oracle Databases with confidence and in much less time than traditional approaches. Built with industry-leading NetApp EF-550 flash storage arrays and Cisco UCS B200 M3 Blade Servers this solution can deliver the highest levels of performance for the most demanding Oracle Database workloads on the planet.

The system will deliver more than one million IOPS of read performance for Oracle Database workloads at sub-millisecond latencies. This means faster response times for end users, improved database application performance, and more overhead to run additional workload or consolidate databases. Not only that, but this pre-validated and pre-tested solution is based on a balanced configuration so that the infrastructure components you need to run your business are working in harmony instead of competing for resources. The solution is built with redundancy in mind to eliminate risk and allow for flexibility in deployment options. The architecture scales linearly so that you can start with a smaller configuration and grow as your business needs change optimizing a return on investment. If something goes wrong the solution is backed by our collaborative support agreement so there is no finger pointing and only swift problem resolution.

So what would you do with one million IOPS? Build a new application that will respond to a competitive threat? Deliver faster results for your company? Increase the number of users and transactions your application can support without having to worry about missing critical service level agreements? If nothing else, imagine how great you will sleep knowing that your business is running with the performance needed for success.

Tags: , , , , , ,